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(Sepia officinalis) were measured in order to evaluate the utility of using these natural tracers
throughout the Northeast Atlantic Ocean and Mediterranean Sea (NEAO-MS). Mantle tissue was
obtained from S. officinalis collected from 11 sampling locations spanning a wide geographical
coverage in the NEAO-MS. Significant differences of both δ13C and δ15N values were found among
S. officinalis samples relative to sampling location. δ13C values did not show any discernable spatial
trends; however, a distinct pattern of lower δ15N values in the Mediterranean Sea relative to the
NEAO existed. Mean δ15N values of S. officinalis in the Mediterranean Sea averaged 2.5‰ lower
than conspecifics collected in the NEAO and showed a decreasing eastward trend within the
Mediterranean Sea with the lowest values in the most eastern sampling locations. Results suggest
δ15N may serve as a useful natural tracer for studies on the population structure of S. officinalis as
well as other marine organisms throughout the NEAO-MS.
os
R.Soc.Open

Sci.8:210345
1. Introduction
The European common cuttlefish, Sepia officinalis Linnaeus, 1758 is a coastal nektobenthic species ranging
from the Shetland Islands through the Northeast Atlantic Ocean and Northwest Africa into the
Mediterranean Sea [1]. This species constitutes one of the most economically valuable cephalopod
resources in the Northeast Atlantic Ocean, supporting an important fishery resource [2,3]. Sepia
officinalis has a relatively short lifespan of 1–2 years, early sexual maturity and an extended spawning
season laying eggs on the seafloor with direct benthic, large hatchlings [4,5]. Given this species
geographical distribution combined with limited dispersal, it has been a targeted model species to
examine connectivity throughout the Northeast Atlantic Ocean and Mediterranean Sea (hereafter
NEAO-MS) [6].

Natural biomarkers such as stable isotopes are commonly used to examine food web structure and
ecosystem connectivity in marine environments [7,8]. Stable isotopes of carbon (δ13C) and nitrogen
(δ15N) are particularly useful tracers due to their natural abundance being influenced by the
environment and ease of measurement in body tissues without having to track individuals in a
population. δ13C is traditionally used to trace carbon pathways because little fractionation occurs
between predator and prey, and different primary producers (energy sources) often have unique δ13C
values [9]. δ13C values of consumers are a product of the primary producers’ composition and
influenced by the dissolved inorganic carbon (DIC) pool, as well as local abiotic factors including sea
surface temperature, and can differ across ocean basins [10] and region-specific freshwater to marine
gradients [9]. δ15N becomes enriched with increasing trophic level and is used to infer trophic
position [7], but can also differ at the base of the food web. Depending upon the types of nutrients
available to stimulate growth, δ15N values can be used to track energy flow in high-nutrient (nitrate)
and low-nutrient (N2 fixation) ecosystems as well as new nitrogen (upwelled nitrate) versus
regenerated nitrogen (ammonia, urea). Combining both δ13C and δ15N offers the potential to study
the connectivity and population structure of species because longitudinal and latitudinal gradients
exist throughout marine ecosystems [11,12], including the NEAO-MS [8,13].

The population structure of S. officinalis has been found throughout the NEAO-MS [14]. Rooker et al.
[6] used stable isotopes of δ13C and δ18O in the cuttlebones and found regional differences throughout
the NEAO-MS due to different environmental conditions among regions, in addition to potential
movement and connectivity between the Strait of Gibraltar and western Mediterranean Sea. Another
study combined genetics, morphometrics and trace elements in cuttlebones with results suggesting
discrete population structure within the eastern Mediterranean Sea [15]. Drábková et al. [16] showed
the degree of genetic diversification of S. officinalis throughout the Mediterranean Sea and suggested
this pattern resulted from a low dispersion capability and a complex structure with different degrees
of genetic exchange among these subpopulations. Further, Pasqual et al. [17] performed a meta-
analysis of species connectivity (based on life-history traits) throughout the Mediterranean Sea
supporting limited connectivity and a high probability of population structuring for species such as S.
officinalis. Previous studies have found patterns of δ13C and δ15N in other marine species throughout
the NEAO-MS suggesting the potential to use these tracers to evaluate population structure and
connectivity [13,18].

The primary purpose of this study was to examine patterns in stable isotopes of δ13C and δ15N from
mantle tissue of S. officinalis collected throughout the NEAO-MS in order to evaluate the utility of using
these natural tracers as tools to examine population structure. Previous studies on S. officinalis have used
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Figure 1. Map of 11 sampling locations for Sepia officinalis from the Northeast Atlantic Ocean and Mediterranean Sea (NEAO-MS).
Sample locations include Bay of Biscay–North (A), Bay of Biscay–South (B), Portugal–West (C), Portugal–South (D), Gulf of Cadiz
(E), Balearic Sea (F), Ligurian Sea (G), Adriatic Sea (H), Gulf of Corinth (I), Aegean Sea–West (J) and Aegean Sea–East (K).
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a variety of techniques including genetics [19], cuttlebone geochemistry [6,20] and electronic tagging [4],
thus this study will expand upon the ecological toolbox available to researchers.
2. Material and methods
Samples of S. officinalis were collected over a 1-year period (2013–2014) from 11 locations throughout the
NEAO-MS (figure 1). Sample locations included five locations within the NEAO: Bay of Biscay–North
(A), Bay of Biscay–South (B), Portugal–West (C), Portugal–South (D) and Gulf of Cadiz (E). Six
locations within the Mediterranean Sea included Balearic Sea (F), Ligurian Sea (G), Adriatic Sea (H),
Gulf of Corinth (I), Aegean Sea–West (J) and Aegean Sea–East (K). Samples were acquired from
artisanal or commercial trawlers, and local market sampling. For market sampling, special care was
taken to acquire small body sizes by local fishers in order to ensure samples were from the specific
region of collection. No special permission to conduct the research was needed and no ethical
assessment was required. Upon collection, S. officinalis samples were measured using straight mantle
length (ML) to the nearest mm and white muscle tissue samples were excised from the mantle and
immediately freeze dried or preserved in 70% ethanol and later freeze dried. Subsamples of cuttlefish
were paired with both (i) immediately freeze dried and (ii) ethanol-preserved specimens later freeze
dried from Bay of Biscay–South (n = 20) and Gulf of Cadiz (n = 19) sample locations in order to assess
if sample preservation techniques affected δ13C and δ15N.

Freeze-dried muscle tissue for stable isotope analysis was homogenized using a mortar and pestle,
weighed, wrapped in tin capsules and shipped to the University of California at Davis’ Stable Isotope
Facility for analysis. Analysis of muscle tissue δ13C and δ15N was carried out using an elemental
analyser (PDZ Europa ANCA-GSL) coupled with an isotope ratio mass spectrometer (PDZ Europa
20–20). The long-term standard deviation of UC Davis’ stable isotope facility is 0.2‰ for δ13C and
0.3‰ for δ15N. Lipids were not extracted from tissue; however, C : N ratios were low (less than or
equal to 3.75) across the size spectrum of S. officinalis samples, indicating a low lipid content and little
influence of lipids on tissue δ13C values [21]. Mean C : N ratio was 3.21 ± 0.13 s.d. and ranged from
2.87 to 3.75. A study by Ruiz-Cooley et al. [22] also showed a significant effect on stable isotope
values as a result of lipid extractions on squid tissues and recommended researchers use caution with
this approach for ecological studies on cephalopods. Isotopic ratios are reported relative to Vienna
PeeDee belemnite for carbon and atmospheric N2 for nitrogen.

Multivariate analysis of covariance (MANCOVA) was used to test for differences in muscle tissue
δ13C and δ15N. Dependent variables included both δ13C and δ15N, cuttlefish size (ML) was used as



Table 1. Summary statistics of cuttlefish collected from 11 locations throughout the NEAO-MS. Mean δ13C and δ15N (±1 s.d.),
sample size (n), mean size (mm) (±1 s.d.) and size range (mm).

sample location δ13C δ15N n mean size size range

Bay of Biscay–North −16.77 (0.36) 14.21 (0.52) 20 144.0 (9.4) 130–170

Bay of Biscay–South −17.63 (0.26) 12.84 (0.39) 64 120.4 (10.9) 100–152

Portugal–West −15.61 (0.89) 11.98 (0.77) 23 79.9 (37.7) 18–153

Portugal–South −13.29 (1.16) 12.22 (0.45) 20 79.5 (15.9) 55–120

Gulf of Cadiz −16.71 (0.50) 12.40 (0.88) 20 108.2 (20.1) 73–144

Balearic Sea −16.58 (0.24) 10.13 (0.29) 20 92.3 (7.9) 79–107

Ligurian Sea −16.33 (0.44) 10.93 (0.68) 19 58.7 (7.6) 45–70

Adriatic Sea −16.26 (0.58) 10.83 (0.72) 17 52.1 (5.0) 45–60

Gulf of Corinth −16.01 (0.78) 9.78 (0.89) 19 103.4 (16.9) 77–127

Aegean Sea–West −14.68 (2.60) 9.34 (0.75) 8 95.1 (14.8) 75–122

Aegean Sea–East −16.93 (0.66) 9.34 (0.69) 6 98.0 (12.9) 82–116
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the covariate, and sampling location as the independent factor. Pillai’s trace statistic was used to test for
significance. Univariate tests for both δ13C and δ15N were also performed using analysis of covariance
(ANCOVA) and a posteriori differences among means were analysed with Tukey’s honestly significant
difference (HSD) test. A t-test was used to test for differences in δ13C and δ15N of cuttlefish tissue
based on preservation technique (freeze-dried versus ethanol-preserved specimens). Normality was
evaluated using a Shapiro–Wilk test and the equal variance assumption was assessed by the
Spearman rank correlation between the absolute value of the residuals and the observed value of the
dependent variable. Quadratic discriminant function analysis (QDFA) was used to evaluate the best
possible classification accuracy of δ13C and δ15N values of cuttlefish tissue based on (i) sampling
location (sites A–K) and (ii) NEAO and MS regions. Statistical significance for all tests was determined
at the alpha level of 0.05.
3. Results
A total of 236 individual S. officinalis tissue samples were analysed for δ13C and δ15N (table 1). Overall
mean size of S. officinalis was 99 mm ML (±31 s.d.) ranging from 18 to 170 mm. Comparisons between
preservation techniques on δ13C and δ15N values of S. officinalis tissue were negligible supporting the
use of either ethanol or freeze-dried samples. Subsamples of S. officinalis from the Bay of Biscay–South
(n = 20) using both preservation methods had no significant effect on δ13C ( p = 0.481) or δ15N ( p =
0.223). Similarly, subsamples from the Gulf of Cadiz (n = 19) had similar δ13C ( p = 0.128) and δ15N
( p = 0.596) values using both preservation techniques (electronic supplementary material, data).

A significant main effect of sampling location was found for both δ13C and δ15N (MANCOVA,
p < 0.001). Significant differences in δ13C values of S. officinalis were found among sampling locations
(ANCOVA, p < 0.001) with no main effect of cuttlefish size (ANCOVA, p = 0.900). Sepia officinalis
collected from Portugal–South had significantly higher δ13C values than samples collected from all
other sampling locations (Tukey HSD, p < 0.001) (figure 2a and table 1). Mean δ13C values from
Portugal–South (−13.29‰ ±1.16) averaged 1.39–4.34‰ higher than δ13C values from the other
sampling locations (figure 3 and table 1). Lowest δ13C values were found in S. officinalis tissues
collected from Bay of Biscay–South (mean −17.63‰ ±0.26) and significantly differed from all other
sampling locations with the exception of three locations in the Mediterranean Sea (Ligurian Sea,
Adriatic Sea, Aegean Sea–East) (figure 3).

Mean δ15N values of S. officinalis tissue differed significantly among sampling locations (ANCOVA,
p < 0.001) with higher values in the NEAO relative to the Mediterranean Sea (figure 2b). A general
pattern of higher δ15N values of S. officinalis collected in the NEAO with a gradual depletion into the
Mediterranean Sea existed with a distinct gradient around the Strait of Gibraltar (figure 2b). In
general, mean δ15N values of S. officinalis in the Mediterranean Sea averaged 2.51‰ lower than
conspecifics collected in the NEAO and continued to decrease eastward within the Mediterranean Sea
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Figure 2. Spatial visualizations of δ13C (a) and δ15N (b) from muscle tissue of Sepia officinalis were collected throughout the
Northeast Atlantic Ocean and Mediterranean Sea (NEAO-MS). The pie charts at each sampling location display individual
variability, with each wedge representing an individual S. officinalis sampled at that location.
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with lowest values in the most eastern sampling locations (Gulf of Corinth, Aegean Sea–West, Aegean
Sea–East) (figure 3). While size ranges of cuttlefish slightly differed among sample locations, no main
effect of size was found on δ15N (ANCOVA, p = 0.481).

Results from QDFA showed moderate overall classification success of 60% among the 11 sampling
locations. Classification success was highest at sampling locations in the Atlantic with Bay of Biscay–
North at 90% and Bay of Biscay–South at 98%, while lowest classification success was from sampling
locations in the Mediterranean Sea (0% success for both Adriatic Sea and Aegean Sea–East). Overall
classification success was 93% when contrasting between the Atlantic (96%) and Mediterranean Sea
(89%) highlighting the differences in δ13C and δ15N of cuttlefish tissue from the two regions.
4. Discussion
Life-history strategy of S. officinalis combined with previous tracer studies suggests limited dispersal and
connectivity leading to population structuring in the NEAO-MS. A relatively short lifespan, early sexual
maturity and a nektobenthic strategy lacking a pelagic larval stage supports population structuring of
this species throughout its range [17,23]. Additionally, genetic studies of S. officinalis within the
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Figure 3. Biplot of mean δ13C and δ15N values (centre of ellipses) with ± 1 s.d. (bars) and 50% confidence intervals (shaded
ellipses) for Sepia officinalis muscle tissues collected from each of the 11 sampling locations (A to K).
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NEAO-MS highlight the complex population structure and a high degree of genetic diversification at a
relatively fine spatial scale [14,16,24]. Pérez-Losada et al. [19] suggested that the population structure
of S. officinalis in the NEAO-MS was driven by isolation through distance and the results of stable
isotopes in muscle tissue presented here show support for this based on the isoscapes throughout the
range examined. These results parallel those from a similar study conducted by Rooker et al. [6] that
found area-specific geochemical signatures in cuttlebone chemistry over the same geographical range.
While this study did not have the spatial resolution to examine potential connectivity through the
Strait of Gibraltar as Rooker et al. [6], results show clear gradients and potential for stable isotopes of
δ13C and δ15N as natural tracers for this species.

Spatial patterns of δ15N in S. officinalis muscle tissue showed a distinct gradient with higher values in
samples collected from the NEAO and a gradual depletion into the Mediterranean Sea from west to east.
These findings parallel those of McMahon et al. [8] where authors performed a meta-analysis of δ15N for
zooplankton examining spatial patterns throughout the Atlantic Ocean and found δ15N values were on
average 2‰ higher than values in the Mediterranean Sea. McMahon et al. [8] also found a similar
gradient within the Mediterranean Sea of higher δ15N values in the west near the Strait of Gibraltar
relative to the east. Similar δ15N patterns have been found for a wide variety of marine taxa ranging
from krill [25], fishes [18,26], whales [13] and seabirds [27] with consistently higher values in the NEAO
relative to the Mediterranean Sea. Patterns of δ15N are most likely due to the differential utilization of
nitrogen sources. Higher latitudes of the Atlantic are fuelled by nitrate in contrast with the oligotrophic
Mediterranean Sea where nitrogen fixation by diazotrophy occurs [28], particularly in the eastern
Mediterranean Sea [29]. Estimates indicate that up to 90% of the nitrogen in the eastern Mediterranean
Sea may be derived from biological N2 fixation in contrast with only 20% in the west [28], probably
owing to the distinct gradient in δ15N observed in the Mediterranean Sea from this study and others.

Isoscapes in δ13C of S. officinalis did not show any discernable spatial trends. δ13C values of marine
organisms are largely a function of the local DIC, and a meta-analysis of zooplankton δ13C in the North
Atlantic did not find any notable patterns in the NEAO-MS [8]. The complexity of hydrodynamical,
biogeochemical and ecological features in the NEAO-MS [30] may explain the lack of a clear gradient
in δ13C values of S. officinalis. Further, the heterogeneous patchiness of the phytoplankton community
structure throughout pelagic waters of the Mediterranean Sea may owe to the δ13C results in this
study [31]. Thus, a combination of the complex physical oceanography combined with the biological
community of the ecosystem may contribute to the lack of any δ13C gradients observed. Two notable
collection locations (Portugal–South and Aegean Sea–West) had higher δ13C values in S. officinalis
muscle tissue than other sampling locations. Specific areas of sample collection at Aegean Sea–West
are unknown due to market-based sample collections; however, Portugal–South collections occurred
near shore relative to other locations in this study. Near-shore waters with increased nutrient loads,
higher productivity and 13C-enriched seagrass input probably contribute to higher δ13C values than
offshore environments [32]. In addition, 13C inputs from benthic algae and terrestrial sources are 13C
heavy probably owing to the higher δ13C values from this particular study location [32]. Future
studies may want to consider increased sampling resolution as this study demonstrated local
conditions probably affect the stable isotope values measured in consumer tissue.



royalsocietypublishing.org/journal/rsos
R.Soc.Open

Sci.8:210345
7

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 O

ct
ob

er
 2

02
4 
Preservation techniques for S. officinalis muscle tissue did not affect stable isotopes of δ13C and δ15N,
demonstrating both methods are adequate. This finding is particularly useful for researchers collecting
tissue samples of this species without immediate access to equipment such as freezers or freeze driers.
Previous studies using stable isotopes on tissues of consumers including cephalopods, fishes and
zooplankton have reported varying results ranging from major effects of preservation techniques to
little or no impact on results [22,33,34].

Findings from this study support the use of stable isotopes as natural tracers to examine the
population structure of S. officinalis in the NEAO-MS and add to the growing ecological toolkit of
tracers available. Specifically, δ15N may serve as a useful natural tracer to track movement and
connectivity for marine species in the region. These findings can be extended to other marine
organisms from zooplankton to apex predators to examine movement and highlight specific gradients
throughout the NEAO-MS. Furthermore, S. officinalis are opportunistic feeders with diets comprising
bony fishes, crustaceans, molluscs and polychaetes [5,35,36] and serve as prey to larger bony fishes,
sharks and marine mammals [3] thereby serving as a model species for future trophic and population
connectivity studies throughout the NEAO-MS.
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